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The separation of variables of the spin- 3
2 field equation is performed in detail in the

Schwarzschild geometry by means of the Newman Penrose formalism. The separated
angular equations coincide with those relative to the Robertson-Walker space-time.
The separated radial equations, that are much more entangled, can be reduced to four
ordinary differential equations, each in one only radial function. As a consequence of
the particular nature of the spin coefficients it is shown, by induction, that the massive
field equations can be separated for arbitrary spin.
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1. INTRODUCTION

The solution of the massive field equation of arbitary spin is a problem of
mathematical and physical interest, specially in concrete examples of space-time.
Recently the massive field equations have been sepearated for arbitrary spin in the
Robertson-Walker (R-W) space-time. The result has been obtained by extending
a separation of variables method employed to integrate the Dirac equation (Zecca,
1996), the spin-1, spin- 3

2 and spin-2 equations in R-W space-time (Zecca, 2005,
2006, 1996b). Another context of physical interest where to study the equations
is that of the Schwarzschild space-time. In that metric wide studies have been
done in case of the lower values of the spin. For the scalar field case see e.g.
Boulware, 1975; Zecca, 2000 and references therein. The Dirac equation results
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to be separable as a consequence of the pioneer paper by Chandrasekhar (1976)
who separated the Dirac equation in Kerr metric. (See also Boulware, 1975a;
Zecca, 1998, 2000). The spin 1 equation, in the form of Proca fields equation,
was separated by Gal’tsov et al., 1984 and, in the general form, independently, by
Zecca (2005). Also studies of massive vector fields perturbations in Schwarzschild
space-time involves variable separation (e.g. Konoplya, 2006).

However, as far as the author knows, the proof that the massive field equations
of arbitrary spin are separable in the variables in Schwarzschild metric seems to
lack. It is the object of the present paper to show that this property does indeed
hold. To that end a preliminary study of the spin- 3

2 equation is performed in detail
by assuming a variable separation in each spinor field component. As expected,
there results a set of separated angular equations that coincide with those of the
R-W case (Zecca, 2006). Instead the radial separated dependence results in a set of
ten coupled ordinary differential equations in the radial functions, whose degree
of entanglement is greater than that relative to the R-W metric. By an elementary
substitution method the scheme is reduced to the study of a system of four coupled
ordinary differential equations that can be reported to independent equations in
one only radial function. Even if asymptotic behaviours of the solutions can
be determined, it remains open the problem of the exact solutions of the radial
equations.

The result, namely the fact that the massive field equations of arbitrary spin
are separable in the Schwarzschild metric follows by the recurrence structure of
the equations. This structure, that is similar to that relative to the R-W metric, does
hold for the spin-1 and spin- 3

2 cases, and on account of the special values of the
spin coefficients, is preserved by increasing the spin value. This suffices to show
by induction the result.

2. SPIN- 3
2 EQUATION IN SCHWARZSCHILD METRIC

The spin- 3
2 field equation can be written in a general curved space-time as

(Illge, 1993; Illge and Schimming, 1999)

∇D
X′φDA1A2 + iµ�θA1A2X′ = 0 (1a)

∇′
(AθA1A2)X′ − iµ�φAA1A2 = 0 (1b)

where µ�

√
2 is the mass of the particle of the field and ∇AX′ the covariant spinor

derivative. We look for solutions of Equation (1) under the assumptions φABC =
φ(ABC) and θAB ′ = θBA′ in the context of the Schwarzschild space-time of metric
tensor

gµν = diag

{
1 − 2M

r
; −

(
1 − 2M

r

)−1

; −r2; −r2 sin2 θ

}
(2)
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To that end we develop the calculations in the Newman-Penrose formalism
(Newman and Penrose, 1976) by choosing the null tetrad frame {li , ni, mi,m�i}
employed in Chandrasekhar’s book (1983), whose corresponding directional
derivatives and non trivial spinor coefficients, that we report fot reader’s con-
venience, are

D = ∂00′ = li∂i = r

r − 2M
∂t + ∂r , (3)

� = ∂11′ = ni∂i = 1

2
∂t + 2M − r

2r
∂r (4)

δ = ∂01′ = mi∂i = 1

r
√

2
(∂θ + i csc θ ∂ϕ), (5)

δ� = ∂10′ = m�i∂i = 1

r
√

2
(∂θ − i csc θ ∂ϕ). (6)

ρ = −1

r
, µ = 2M − r

2 r2
, γ = M

2r2
, β = −α = 1

2
√

2

cot θ

r
. (7)

By expliciting the Equation (1) in terms of the directional derivatives and
spin coefficients (see e.g., Penrose and Rindler, 1984) one gets

(D − 3ρ)φ1 − (δ� − 3α)φ0 = iµ�θ000′ (8)

(D − 2ρ)φ2 − (δ� − α)φ1 = iµ�θ010′ (9)

(D − ρ)φ3 − (δ� + α)φ2 = iµ�θ110′ (10)

(� + µ)φ0 − (δ + α)φ1 = −iµ�θ001′ (11)

(� + 2µ)φ1 − (δ + α)φ2 = −iµ�θ101′ (12)

(� + 3µ)φ2 − (δ − 3α)φ3 = −iµ�θ111′ (13)

(D − ρ)θ001′ − (δ + α)θ000′ = −iµ�φ0 (14)

(D − ρ)θ011′ − (δ − α)θ010′ + µθ000′ = −iµ�φ1 (15)

(D − ρ)θ111′ − (δ − 3α)θ110′ + 2µθ010′ = −iµ�φ2 (16)

(� + µ)θ000′ − (δ� − 3α)θ001′ − 2ρθ101′ = iµ�φ1 (17)

(� + µ)θ100′ − (δ� − α)θ101′ − ρθ111′ = iµ�φ2 (18)

(� + µ)θ110′ − (δ� + α)θ111′ = iµ�φ3 (19)

It has been set φk ≡ φABC ⇔ k = A + B + C = 0, 1, 2, 3. The second
group of Equations (14)–(19) corresponds to the explicitation of equation (1b)
without symmetrization. The equations have been maintained in this form to put
in evidence the recurrence structure of the equation (as it happens also for spin-1
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both in the present and in the R-W metric (Zecca, 2005, 2006), that will be usefull
in the generalization of the result.

3. SEPARATION OF SPIN- 3
2 EQUATION

To perform the calculations, it is better to consider the exact development of
Equation (1b). Therefore, toghether with Equations (8)–(13) that are the explici-
tation of Equation (1a), one has to consider the four equations obtained from the
symmetrization of Equations (14)–(19) that represent the exact explicitation of
Equation (1b). These ten resulting equations can be separated by the positions

φh = ϕh(r)Sh(θ )F (t, ϕ), F = eimϕ+ikt , h = 0, 1, 2, 3, (20)

θ000′ = F (t, ϕ)S1(θ )θ00′ (r) θ001′ = −F (t, ϕ)S0(θ )θ01′(r)

θ010′ = F (t, ϕ)S2(θ )θ10′ (r) θ101′ = −F (t, ϕ)S1(θ )θ11′(r) (21)

θ110′ = F (t, ϕ)S3(θ )θ20′ (r) θ111′ = −F (t, ϕ)S2(θ )θ21′(r)

We assume m = 0,±1,±2, . . .. The resulting separated angular equations are

L−
3
2
S0 = λ1S1 L−

1
2
S1 = λ2S2 L−

− 1
2
S2 = λ3S3

L+
− 1

2
S1 = λ4S0 L+

1
2
S2 = λ5S1 L+

3
2
S3 = λ6S2

(22)

λi, i = 1, 2, . . . , 6 separation constants and it has been set L±
d = ∂θ ∓ m csc θ +

d cot θ . These equations are the same as those relative to the spin- 3
2 in R-

W space-time. By setting λ1λ4 = λ3λ6 = λ2λ5 + 1 = λ2 the Equation (22) can
be consistently put into the form of an eigenvalue problem that can be an-
alytically solved (see Zecca, 2006). The result is that λ2 takes the values
λ2 + 33

8 = l(l + 1), l = 2, 3, . . .; S1, S2 are the same as those of the spin- 1
2 case,

while the function S0, that can be obtained from S3 by the substitution m → −m,
is essentially expressed in terms of Jacobi polynomials.

By using the positions (20), (21) into the mentioned symmetrized equations,
the separated radial equations, that we write in a compact form, result to be

A3φ1 − λ1

r
√

2
φ0 = iµ�θ00′ (23)

A2φ2 − λ2

r
√

2
φ1 = iµ�θ10′ (24)

A1φ3 − λ3

r
√

2
φ2 = iµ�θ20′ (25)

B0φ0 − λ4

r
√

2
φ1 = iµ�θ01′ (26)
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B1φ1 − λ5

r
√

2
φ2 = iµ�θ11′ (27)

B2φ2 − λ6

r
√

2
φ3 = iµ�θ21′ (28)

A1θ01′ + λ4

r
√

2
θ00′ = iµ�φ0 (29)

2A0θ11′ +
(

B−1 + 1

2r

)
θ00′ + 1

r
√

2
(2λ5θ10′ + λ1θ01′ ) = 3iµ�φ1 (30)

A−1θ21′ +
(

2B−1 + 4M

r2

)
θ10′ + 1

r
√

2
(2λ6θ20′ + 2λ2θ11′ ) = 3iµ�φ2 (31)

(
B1 + 1

2r

)
θ20′ + λ3

r
√

2
θ21′ = iµ�φ3 (32)

where it has been defined

Ad = d

dr
+ ikr

r − 2M
+ d

r

Bf = 2M − r

2r

d

dr
+ ik

2
+ M(4f + 1) − r(f + 1)

2r2
. (33)

By using the Equations (23)–(28) into Equations (29)–(32) the solution of
the system of equations can be reduced to the solution of the following coupled
differential equations

3
√

2λ2rφ1

r − 2M
= r2φ′′

0 + r
M + 2r

r − 2M
φ′

0

−
[
M + rλ2 + 2µ2

�r
3

r − 2M
− k2r4 + 3ikMr2

(r − 2M)2

]
φ0 (34)

6λ5φ2

r2
√

2
− 3λ1(r − 2M)

2r3
√

2
φo =

[
2A0B1 + B−1A3

+ M

2r
A3 + 3λ2 + 2

2r2
+ 3µ2

�

]
φ1 (35)

3λ2(2M − r)φ1

r3
√

2
+ 3λ6φ3

r2
√

2
=

[
A−1B2 + 2B−1A2

+ 4M

r3
A2 + 3λ2 + 2

2r2
+ 3µ2

�

]
φ2 (36)
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3λ3√
2

φ2 = −r2φ′′
3 − r(2r − 5M)

r − 2M
φ′

3

+
(

M + rλ2 + 2µ2
�r

3

r − 2M
− k2r4 − 3ikMr2

(r − 2M)2

)
φ3 (37)

λ2 = l(l + 1) − 33/8, l = 2, 3 · · ·. In turns these equations can be given the form
of equations in one only unknown function. As an example, from Equations (34)
and (35) one has φ2 = F2φ0 that toghether with (36), (34) implies φ3 = F3φ0.
On the other hand from (35), (36) φ0 can be expressed as a function of φ2, φ3

and hence φ0 = F0φ3 by (37). Therefore φ3 = F3F0φ3 and φ0 = F0F3φ0, F0, F3

linear differential operators of higher order. It is evident that the explicit solution
of these last equations remains difficult. It is however easy to see that the Equa-
tions (34)–(37) admit asymptotic solutions of the form

φ1
∼= φ2

r→∞−→ e±iωr ,

φ0
∼= φ3

r→∞−→ e±iωr

r
.

(38)

where ω = √
k2 − 2µ2

�.

4. FIELD EQUATION OF ARBITRARY SPIN

The massive field equations for spin s = n+1
2 can be consistently formulated

in curved space-time (see Illge, 1993 and Illge and Schimming, 1999) as

∇D
Ẋ

φDA1A2...An
= −iµ� θA1A2...A′

n
(39a)

∇′
(A θA1A2...An)X′ = iµ�φAA1A2...An

(39b)

where again µ�

√
2 is the mass of the particles of the field and the spinors are

assumed to be symmetric in the unprimed indexes: φDA1A2...An
= φ(DA1A2...An) and

θA1A2...AnX′ = θ(A1A2...An)X′ . To show that the Equation (39) are separable for arbi-
trary spin one can proceed, a fortiori, as for the case of the R-W space-time because
here also the spin coefficients ε vanishes. The result follows by remarking that
passing from order n − 1 to order n amounts in adding to the detailed expressions
of the spinor derivatives in Equations (39a) and (39b) respectively the terms

φD
A1A2...An−1X

�X
DX′An

θ(A1A2...An−1X)X′ �X
AX′An

By expliciting � X
D′An

in terms of the spin coefficients (Penrose and Rindler, 1984)
one can check (e.g. Zecca, 1996b) that by keeping A1A2. . .An−1 fixed and letting
h = A1 + A1 + . . . + An−1, the term (40a) introduces in the equation of order
n − 1 only terms φh, φh+1 for An = 0 and φh+1, φh+2 for An = 1. Therefore by
induction over n the structure of the left hand side of Equation (39a) contains
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always two φ components as in Equations (8)–(13) for s = 3
2 . Increasing n in-

creases the number of times the spin coefficients appear in the equation.
There follows that the obvious generalization of the assumption (20), (21)

separates not only Equation (39a) but also Equation (39b), by induction, because
this is true for s = 1 [Zecca, 2005] and s = 3

2 (present work). Indeed, by an ar-
gument like to the above, the term (40b) maintains in two or three the number
of the θ components involved in the explicitation of the left hand side of Equa-
tion (39b), whose structure is the obvious generalization by recurrence of Equa-
tions (15)–(19).
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